Jesus Torres Vazquez

Biosketch / Results /

Jesus Torres Vazquez

Associate Professor, Department of Cell Biology
Skirball Institute

Contact Info

Address
540-562 First Avenue
New York, NY 10016

212/263-0298
jtorresv@med.nyu.edu


Education

1995-2001 — University of California, Irvine, Graduate Education
2001-2006 — National Institute of Health, PostDoctoral Training

Research Summary

The vertebrate vasculature displays a highly reproducible and pervasive anatomy, required for the delivery and exchange of gases, hormones, metabolites and immunity factors. Consequently, defective vessel growth contributes to the pathogenesis of multiple human diseases.

To understand the genetic pathways and cellular strategies used by developing vessels to acquire their architecture, we are using genetic approaches and imaging tools to study vascular development in zebrafish. In particular, we are focusing on answering the following questions:

  1. What are the signaling pathways that shape the anatomical pattern of the vasculature?
  2. What are the molecular mechanisms by which these pathways regulate the motility, shape and proliferation of endothelial cells?

We hope that the answers to these questions will allow us to contribute to the development of therapies aimed at the regulation of blood vessel growth, like anti-cancer treatments and ischemic tissue re-vascularization.

Why zebrafish?
The transparent and externally developing zebrafish embryo is the only genetic system in which blood vessel development can be visualized in vivo and in real time. In addition, animals with defective vessels survive for long periods of time due to passive oxygen diffusion, providing the opportunity to study both early and late embryonic stages of vascular patterning. In our studies, we employ transgenic animals carrying vascular fluorescent reporters and high-resolution imaging methods, such as confocal microscopy and microangiography to study gene-specific loss of function phenotypes generated by mutagenesis or morpholino injection.

Want to watch an example of this powerful combination? See the development of the zebrafish trunk vasculature (formation of the intersomitic vessels) in a normal embryo and in an animal lacking plxnD1 activity.

Confocal time-lapse movies of the development of the intersomitic vessels in TG(fli1-EGFP)y1 embryos (Lateral views, from 20 to 32 hours post fertilization. Dorsal is to the top and anterior is to the left). Note that in wild type embryos the intersomitic vessels sprout at regular intervals and display thin and dynamic filopodia-like projections, which are absent from the Dorsal Aorta. The path followed by the intersomitic vessels prefigures their final shape. By contrast, in animals lacking the function of the endothelial-specific receptor plxnD1 the intersomitic sprouts grow at irregular intervals and form an aberrant interconnected vascular network due to the formation of ectopic interconnections.

Learn more at the Torres-Vazquez Laboratory Homepage.

Research Interests

Blood vessel formation in zebrafish

The role of Hath6, a newly identified shear-stress-responsive transcription factor, in endothelial cell differentiation and function
Fang, Fang; Wasserman, Scott M; Torres-Vazquez, Jesus; Weinstein, Brant; Cao, Feng; Li, Zongjin; Wilson, Kitchener D; Yue, Wen; Wu, Joseph C; Xie, Xiaoyan; Pei, Xuetao
2014-05-06; 0021-9533,Journal of cell science - id: 954622, year: 2014 Journal Article

Control of angiogenesis by AIBP-mediated cholesterol efflux
Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vazquez, Jesus; Li, Andrew C; Miller, Yury I
2013-10-10; 0028-0836,Nature - id: 563832, year: 2013 Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't

Transgenic retinoic acid sensor lines in zebrafish indicate regions of available embryonic retinoic acid
Mandal, Amrita; Rydeen, Ariel; Anderson, Jane; Sorrell, Mollie R J; Zygmunt, Tomas; Torres-Vazquez, Jesus; Waxman, Joshua S
2013-05-29; 1058-8388,Developmental dynamics - id: 354292, year: 2013 JOURNAL ARTICLE

Sphingosine-1-Phosphate Receptors S1pr1 and S1pr2 Cooperatively Regulate Embryonic Vascular Development
Mendelson, Karen; Zygmunt, Tomasz; Torres-Vazquez, Jesus; Evans, Todd; Hla, Timothy
2012-12-27; 0021-9258,Journal of biological chemistry - id: 204392, year: 2012 JOURNAL ARTICLE

CDP-diacylglycerol synthetase-controlled phosphoinositide availability limits VEGFA signaling and vascular morphogenesis
Pan, Weijun; Pham, Van N; Stratman, Amber N; Castranova, Daniel; Kamei, Makoto; Kidd, Kameha R; Lo, Brigid D; Shaw, Kenna M; Torres-Vazquez, Jesus; Mikelis, Constantinos M; Gutkind, J Silvio; Davis, George E; Weinstein, Brant M
2012-09-13; 0006-4971,Blood - id: 177779, year: 2012 Journal Article; Research Support, N.I.H., Extramural; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't