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Tinbergen proposed that instinctive behaviors can be divided

into appetitive and consummatory phases. During mating and

aggression, the appetitive phase contains various actions to

bring an animal to a social target and the consummatory phase

allows stereotyped actions to take place. Here, we summarize

recent advances in elucidating the neural circuits underlying

the appetitive and consummatory phases of sexual and

aggressive behaviors with a focus on male mice. We outline the

role of the main olfactory inputs in the initiation of social

approach; the engagement of the accessory olfactory system

during social investigation, and the role of the hypothalamus

and its downstream pathways in orchestrating social behaviors

through a suite of motor actions.
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Mating and aggression are innate social behaviors preva-

lent across mammalian and non-mammalian species. Pur-

suit of the underlying neural circuitry responsible for

these behaviors has been a goal of neuroscientists for

nearly a century. Here we will provide an updated view

regarding the neural circuits of mating and aggression

with a special focus on mice — a genetically tractable

model organism widely used in the laboratory. Sexual and

aggressive behaviors are highly sexually dimorphic and

thus the underlying neural circuits for these behaviors are

likely to be different between sexes. In this review we

will focus on male neural circuits, given that this has been

the subject of choice for most recent studies. The lack of

studies in females is possibly due to concerns about

confounding contributions from the estrous cycles and
www.sciencedirect.com 
maternal states, the relatively low level of aggression in

females or simply out of convention. Fortunately, with

NIH’s new emphasis on sex balance in animal studies [1],

research using female subjects is likely to increase, which

will provide a better understating of sex differences in

neural circuits of mating and aggression.

Lorenz and Tinbergen proposed that each sequence of

instinctive behavior can be divided into a variable appe-

titive phase and a more rigid consummatory phase [2].

The appetitive phase contains variable seeking actions

that bring an organism into contact with a certain stimu-

lus, which would then elicit relatively stereotypic con-

summatory actions. In rodents, the appetitive phase of

both mating and aggression involves approach and inves-

tigation of a social stimulus. The subsequent consumma-

tory phase for mating includes mounting, intromission

and ejaculation whereas attack is the major consummato-

ry action of aggression. Generally speaking, as mating and

aggression advance from the appetitive phase to consum-

matory phase, the behavioral expression as well as the

involved brain regions become increasingly different.

The main olfactory pathway relays information
for social approach
Approach, as a critical appetitive step of mating and

aggression, can potentially be triggered by sensory cues

that are detectable from a distance, such as auditory,

visual and olfactory cues. For rodents, olfactory volatiles

play an especially important role relative to other sensory

modalities. For example, male mice preferentially ap-

proach soiled bedding which is enriched in volatiles from

a stranger male over clean bedding but show no prefer-

ence towards the conspecific in a solid plexi-glass cylinder

that blocks the olfactory cues [3].

Which brain regions are involved in detecting a distant

conspecific odor before initiating approach? In mice,

odors can be detected through either accessory olfactory

system (AOS) or the main olfactory system (MOS) [4].

The AOS detects mostly non-volatile odorants including

major urinary proteins [5] and steroids [6] through close

contact with the source of odor [7,8] and probably con-

tributes minimally to the initial approach. For the MOS,

the odor recognition starts from the binding of small

volatile molecules to the over �1000 olfactory receptors

in the main olfactory epithelium [9]. Neurons expressing

the same olfactory receptor converge onto a pair of

glomeruli in the main olfactory bulb (MOB) and thus

transform the conspecific odor to a distinctive glomerular
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activity map [10–13]. Interestingly, not all components in

the conspecific odor contribute equally to the activation

map. In vivo recording revealed that certain biologically

salient cues (e.g. MTMT-a female attractant specifically

present in male urine) are overrepresented in the main

olfactory bulb [14�].

From the main olfactory bulb, the odor information is

relayed to five main downstream areas, including the

anterior olfactory nucleus, piriform cortex, olfactory tu-

bercle, anterior and posterolateral cortical amygdala

(COAa and COApl) and lateral entorhinal cortex

[15,16]. Among those regions, the cortical amygdala has

been recently suggested to be essential for mediating

approach and avoidance behaviors towards innately at-

tractive or aversive odors. This region, unlike the piriform

cortex, retains the topographic organization pattern pres-

ent in the MOB [17,18]. This topographic specificity
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suggests that if innately attractive or aversive odors evoke

distinct glomerular activation patterns in the MOB, this

segregation in patterns will be preserved in the COA and

could be used to activate innate pathways for approach

and avoidance. Indeed, aversive odors, such as TMT

(a component of fox feces) activate mainly the anterior

COA [19] whereas attractive odors, such as 2-phenyletha-

nol (a component of male mouse feces [20]) activate

mainly the posterior COA [21��] (Figure 1). When Root

et al. optogenetically inhibited either the MOB to COA

pathway or cells in the COA, they eliminated the attrac-

tion towards 2-phenylethanol and avoidance towards

TMT [21��]. Conversely, optogenetic reactivation of

the COA population activated by the 2-phenylethanol

is appetitive whereas reactivation of the TMT respon-

sive cells is aversive [21��] (Figure 1). Thus, activity in

the COApl is essential for the innate approach response

towards an attractive odor (Figure 2). One interesting
us
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Neuronal circuits implicated in different phases of aggression and sexual behaviors in rodents. Red, blue and purple lines indicate pathways

mainly involved in fighting, mating or both. AOBa: anterior accessory olfactory bulb; AOBp: posterior AOB; BNSTpl/pm: posterolateral/

posteromedial bed nucleus of the stria terminalis; COApl/pm: posterolateral/posteromedial cortical amygdala; CTF: central tegmental field; MDRN:

medullary reticular nucleus; MEA: medial amygdala; MOB: main olfactory bulb; MPA: medial preoptic area; NAc: nucleus of accumbens; NRM:

nucleus of raphe magnus; NRP: nucleus of raphe pallidus; PAG: periaqueductal gray; PnC: caudal Pontine; SI: substantia innominate; VTA: ventral

tegmental area.
feature of the COApl cells that receives little attention is

its abundant expression of estrogen receptor alpha (ERa)

and androgen receptor (AR) [22]. The highly enriched

hormone receptors suggest that the responsiveness of the

COApl cells and correspondingly the attractiveness of

odors may be under the regulation of the circulating sex

hormones. The levels of these sex hormones can change

drastically during development, aging and after various

social experience (e.g. winning a fight) and could modify

the role of the COApl in approach behavior [23].

Although the neural activity in the COApl during social

approach remains unknown, high levels of expression of

Fos, a surrogate molecular marker for neural activity, are

observed after episodes of male or female chemo-inves-

tigation [24�]. One interesting question is whether the

approach-promoting conspecific volatiles detected by the

COA provide sufficient information to identify the social

target as an opponent or a potential mate. Our previous

Fos Catfish mapping (a method that allows the compari-

son of neural activity after two separable behaviors within

a single animal) revealed that a relatively large percentage

of mating-activated and fighting-activated cells overlap in

the COApl [25��], suggesting that male and female odor

may recruit similar COA cells that carry little information

regarding the sex identity of the targeted animal.
www.sciencedirect.com 
Major targets of the COApl include the bed nucleus of

stria terminalis (anterior, posterolateral and transverse

nuclei), medial (posterodorsal and anterior) and central

amygdala, ventral subiculum (SUBv), ventral part of the

lateral septum (LSv), substantia innominate (SI), nucleus

accumbens (NAc) and infralimibic area [26] (Figure 2).

Among those downstream areas, the NAc and SI have

been identified as potential regions for regulating social

interest. Mice that experience repeated defeat develop a

long-lasting aversion to social contact. This change in

behavior is accompanied by increased brain-derived neu-

rotrophic factor (BDNF) in the dopaminergic cells in the

ventral tegmental area (VTA), and increased dopamine

release as well as dramatic changes in the gene expression

pattern in the NAc, a major downstream area of the VTA

[27,28]. Blockage of BDNF activity in the VTA reverses

changes in gene expression pattern in the NAc and

restores the social approach in defeated male mice

[27]. In addition, comparison of the Prairie and montane

vole, two species that are closely related but exhibit

opposite social phenotypes, has implicated the SI in

promoting social interest. Prairie voles are monogamous,

seek out social contact, and form long-lasting social

bonds. In contrast, montane voles are promiscuous and

avoid social contact, except for the purpose of mating. In

monogamous social voles, the vasopressin receptor 1a
Current Opinion in Neurobiology 2016, 38:27–37
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(VR1a) is expressed at much higher levels in the ventral

pallidum (which contains a large part of SI) [29]. Strik-

ingly, increasing the VR1a expression in the ventral

pallidum significantly enhances social interaction in the

promiscuous voles [30]. Future pathway specific func-

tional manipulations will help address whether the

COApl initiates approaching behavior through its projec-

tions to these two areas.

Social investigation activates the accessory
olfactory system
Once the animal reaches a conspecific target, it often

closely investigates the target. The length of investiga-

tion depends on the familiarity of the intruder [31] and

the experience of the animal [32] and can range from a

few seconds to several minutes. Most of the investigation

is directed towards the anal and facial regions of the

intruder which are rich sources of chemical signals that

convey information about sex and strain, namely pher-

omones [33,34]. Pheromones are actively pumped into a

liquid filled lumen of the vomeronasal organ (VNO) lined

up with specialized receptors [35]. With each bout of

investigation, the concentration of pheromone cues

increases in the VNO [36]. Within a bout of investigation,

the activity of mitral cells in the AOB gradually increases

over the course of 20 s after initial contact and remains

active for 10–30 s after cessation of direct interaction [8].

Investigation of male and female pheromones results

differential activation patterns in the AOB: male mice

exposed to female urine showed a strong Fos induction in

the rostral AOB whereas male urine induced a bias

distribution of Fos in the posterior AOB [37�]. This

differential activation pattern is likely to result in differ-

ential activation patterns in the central brain. Whereas

both rostral and caudal AOB project heavily to the medial

amygdala (MEA), posteromedial COA (COApm) and bed

nucleus of the accessory olfactory tract (BOAT), only

rostral AOB projects to the BNST, posteromedial part

(BNSTpm) [38�] (Figure 2). Thus, BNSTpm may be

preferentially activated during female but not male in-

vestigation. Consistent with this, a significant increase in

Fos expression was only observed in the BNSTpm after

female investigation but not male investigation [24�]. In

line with these data, large electrical lesions encompassing

both BNSTpm and its lateral part significantly reduced

chemoinvestigation of females in male hamsters [39]. It is

worth noting that posterodorsal part of the MEA, the

other major target of the AOB, also projects heavily to the

BNSTpm [40]. Thus, male pheromones could still have

indirect access to the BNSTpm (Figure 2). However,

MEApd projection cells are largely GABAergic [41]

whereas AOB mitral cells are exclusively glutamatergic

[42]. Thus, these two pathways likely influence the

activity of BNSTpm cells in opposite directions. Future

studies using more precise functional manipulation and

recording techniques will help understand any potentially
Current Opinion in Neurobiology 2016, 38:27–37 
differential involvement of the BNSTpm in male and

female investigation.

MEApd is arguably the most studied downstream targets

of the AOB [43]. Indeed, multiple lines of evidence

suggest the activation of the MEApd during social

behaviors. Immediate early gene mapping studies con-

sistently reported increased Fos expression in the

MEApd after mating, fighting or conspecific investiga-

tion [25��,39,44,45]. Electrophysiological recordings in

anaesthetized animals showed that MEA cells respond

robustly to conspecific pheromones especially from the

opposite sex [46�]. Recordings made in freely moving

male rats revealed elevated MEA cell activity during

both investigation of females and during discrete copu-

latory events [47]. Consistent with this, lesioning the

MEA in several species robustly impaired male sexual

behaviors but resulted in minor or inconsistent effects

on male aggression [48–55]. However, recent data from

cell type specific functional manipulations of the MEA

suggest a more dominant role of the MEApd in aggres-

sion in comparison to mating [56��,57�] (Figure 3). Ab-

lation of aromatase expressing cells in the MEApd

significantly increased the latency to attack and the total

number of attack events but did not affect male sexual

behaviors [57�]. Optogenetic inhibition of the GABAer-

gic cells in the MEApd instantaneously halted ongoing

attack but failed to disrupt ongoing intromission ([56��]
and personal communication with Weizhe Hong,

UCLA). Although mounting can be induced by optoge-

netic activation of GABAergic cells in the MEApd, it is

relatively rare in comparison to aggression which can be

elicited in 100% of test animals [56��] (Figure 3). The

discrepancy between the results from recent cell-type

specific manipulations and previous non-selective lesion

studies could suggest the existence of additional sub-

populations in the MEA that are more critically involved

in mating or that other AOB targets such as the

BNSTpm may play a more essential role in male sexual

behavior than previously appreciated.

Other AOB targets, such as the BOAT, MEAa, MEApv

and COApm are less well studied although all these areas

show strong Fos induction after encounter with conspe-

cific stimulus [39,58,59]. Do they play redundant, distinct

or counter-acting roles in mediating social behaviors?

Functional manipulation and recordings in each of these

areas will be needed to address this question and provide

a more comprehensive understanding of how pheromonal

information is processed during social investigation.

The role of the main olfactory input is not limited to the

approach phase of social behaviors. In fact, MOB inputs

during social investigation are probably as critical as AOB

inputs and may also be required to promote consumma-

tory actions. Unconditional disruption of genes that en-

code signal transduction proteins that are required for
www.sciencedirect.com
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Figure 3
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The roles of the MEApd and VMHvl in male mouse aggression and mating.

(a) Coronal atlas illustrating the MEApd and VMHvl. (b) Molecularly defined subpopulations in the VMHvl (left) and MEApd (right). (c) Summary of

behavioral effects induced by functional manipulations in the MEApd and VMHvl on aggression and mounting. ": increase behavior; #: decease

behavior; !: no change in behavior. -: not reported. (d) Summary of in vivo electrophysiological responses of cells in the VMHvl and MEApd

during sampling of male and female conspecific odors or various phases of aggression and mating. ": activation, #: inhibition. Number of Arrows

indicates the magnitude of the responses across the population.
activating olfactory neurons resulted in the impairment of

several social behaviors [60–62]. More recently, Mastuo

et al. selectively deleted the dorsal part of the MOB and

found that the manipulation reduced aggression towards
www.sciencedirect.com 
males and also ultrasonic vocalization towards females,

whereas copulatory behavior remained relatively un-

changed [63��]. However, these mutant mice lacking

the dorsal MOB showed mostly normal investigation
Current Opinion in Neurobiology 2016, 38:27–37
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towards a conspecific and the activity in the AOB was

unchanged. These data suggest that MOB input is re-

quired for the initiation of certain aspects of consumma-

tory social actions even after the contact with the stimulus

animal was successfully established.

The hypothalamus plays an essential role in
aggressive and sexual behaviors
The medial hypothalamus is the most prominent down-

stream target of both the medial and cortical amygdaloid

areas. Not surprisingly, this region has been identified as

the most critical site for expression of innate social

behaviors based on decades of lesion, stimulation, hor-

mone implantation and electrophysiological recording

experiments. Here, we review some recent progress re-

garding the role of the medial preoptic area (MPA) and

the ventrolateral part of the ventromedial hypothalamus

(VMHvl) in mating and aggression. Both of these areas

express high level of hormone receptors and integrate

inputs from the main and accessory olfactory systems.

A series of classic electric stimulation studies mapped out

a ‘hypothalamic attack area (HAA)’ from which attack can

be induced in rats. This region includes a part of the

VMHvl and its anterior and lateral structures [64,65].

More recently, our lab and others pinpointed the VMHvl

as a critical site for eliciting male mouse aggression. The

VMHvl spans approximately 700 mm along the anterior-

posterior axis, 400 mm medial-laterally and 200–400 mm

dorsal-ventrally depending on the anterior-posterior po-

sition. We estimate that it contains approximately 10,000

neurons, most of which (>90%) are glutamatergic [41].

Non-cell type specific pharmacogenetic inhibition, opto-

genetic inhibition of the Esr1 expressing cells or killing

the progesterone receptor (PR) expressing cells in the

VMHvl all effectively suppressed natural inter-male at-

tack [25��,66,67��]. Conversely, optogenetic activation of

the VMHvl cells, either non-selectively or selectively in

the Esr1 population induced attack towards castrated

males, females and even inanimate objects [25��,67��].
Electrophysiological recording showed that a quarter to a

half of VMHvl cells respond maximally during attack and

also carry information regarding the imminence and in-

tensity of future attacks [25��,68,69�]. During interaction

with a female, a subset of VMHvl cells are also activated

(but to a much lesser extent) and the majority of the

female-excited cells overlap with male excited cells

[25��,68]. Female-excited VMHvl cells were most active

during female investigation and initial mounting. During

intromission and ejaculation, the female-excited cells

gradually decreased activity and as a population the

VMHvl activity decreases [25��]. Consistent with the

low level of activity increase in the VMHvl during sexual

behaviors, no change in mating was observed during

optogenetic inhibition of Esr1 cells or non-selective

pharmacogenetic inhibition of VMHvl cells although

ablation of the PR expressing cells reduced mounting
Current Opinion in Neurobiology 2016, 38:27–37 
and intromission events [25��,66,67��] (Figure 3). Thus,

whereas the VMHvl is indispensable for male aggression,

it may play a subsidiary role in promoting male sexual

behavior. This role may possibly include facilitating

mount initiation and the transition to intromission.

Unlike the VMHvl, the MPA appears to be indispensable

for male sexual behavior based on numerous classical

lesion, stimulation, hormone implantation and pharma-

cological studies (Reviewed in [70]). Unfortunately, re-

search effort along this direction has diminished in recent

years despite the fact that our understanding of the MPA

function is far from complete. MPA is a large structure,

spanning approximately 1.2 mm along the anterior-pos-

terior axis. It converges both olfactory inputs from the

amygdala and bed nucleus of stria terminalis and the

somatosensory inputs from the genital area via the central

tegmental field [71,72], a region that becomes highly

active during penile stimulation and ejaculation

[73–76]. The MPA is heterogeneous, containing a variety

of neuropeptides (e.g. calbindin, galanin, neurotensin and

enkephalin), neurotransmitters (GABA and glutamate),

hormone receptors (Esr1 and AR) and receiving a variety

of neuromodulatory and neuropeptergic inputs (e.g. neu-

ropeptide Y, oxytocin, serotonin) (www.brain-map.org)

[77,78]. Further complicating this heterogeneity, tracing

studies revealed distinct input and output patterns from

each subdivisions of the MPA [79]. Thus, the MPA

contains a cluster of subregions, each with different

molecular features, projection patterns and possibly

non-overlapping roles in sexual behaviors. For example,

a specific subregion of the MPA (posterodorsal preoptic

nucleus, a small cluster of cells situated in the posterior

dorsal part the MPA) was only found active after repeated

ejaculations [80]. While the role of the MPA in male

sexual behavior is well established, many details remain

to be filled in.

The role of the MPA in aggression remains unclear. Some

studies reported that the MPA is active during aggression

[81], but others failed to find such an involvement of the

MPA [60,82]. This discrepancy in results could be partly

due to the different MPA subregions targeted in each

study. Veening et al. noticed that whereas the anterior

MPOA was activated only after mating, the posterior

MPA was activated after both male and fighting [81],

suggesting that the posterior MPA may be more relevant

for aggression. Future studies using refined cell type

specific manipulation and recording tools will be espe-

cially useful in teasing apart the functions of individual

MOPA cell groups in social behaviors (e.g. [82]).

Although the review focuses on results from rodents, the

functions of the VMHvl and MPA are evolutionarily

conserved. In visually dominant animals, such as birds

and primates, the MPA and VMH remain the key sites for

mating and aggression [83–86]. How socially relevant
www.sciencedirect.com
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information from other sensory systems, such as vision,

reaches and informs those hypothalamic areas is largely

unknown and represents an important knowledge gap.

The motor output of social behaviors beyond
the hypothalamus
The activity in the hypothalamus ultimately needs to

propagate to motoneurons to initiate discrete mating and

aggression related movements, such as mount, chase,

circle, lunge and bite. The precise pathway information

from the hypothalamus to the motoneurons is not

completely understood. In 1990, Holstege et al. proposed

two parallel pathways governing the motor outputs. One

is the well-known voluntary motor system involving the

motor cortex, the other is so-called ‘emotional motor

system’ involving direct projections from the limbic sys-

tem (including hypothalamus, amygdala, bed nucleus of

stria terminalis and prefrontal cortex) to the brainstem

and spinal cord [87,88]. The existence of the emotional

motor pathway is evident from hemiplegic patients with

damage to corticobulbar fibers. Although those patients

suffer from paresis of the lower face on one side, they are

able to smile symmetrically when they, for instance, enjoy

a joke. This example and many others illustrate that there

exists a complete dissociation between the voluntary and

emotional routes to control motor neurons. In rodents,

lesion and tracing studies suggest that most of innate

social behavior related movements depend little on the

motor cortex. In extreme cases, neonatally decorticated

rats fight and copulate nearly indistinguishably from their

intact counterparts [89–91].

The periaqueductal gray (PAG) represents one of the

most important relays between the hypothalamus and the

motor neurons in the spinal cord. It is the major midbrain

target of the MPA and the VMHvl as well as other

hypothalamic nuclei [79,92–94]. Tracing studies reveal

that PAG neurons project to the nucleus raphe magnus

(NRM) and pallidus (NRP), the ventral part of the caudal

pontine, the medullary reticular formation and directly to

the spinal cord [95–98]. The PAG projecting brainstem

areas in turn project diffusely, but very strongly to all parts

of the gray matter throughout the length of the spinal cord

[99–101]. Thus, the PAG provides a potential access point

for the hypothalamus to directly control the spinal cord

motor neurons. To illustrate this, when the pathway

between the dorsomedial part of the VMH, a region

essential for predator defense, and the PAG was opto-

genetically activated, the animal showed instantaneous

immobility [102�]. Although pathway specific activation

between the hypothalamus and PAG has not yet been

reported in the context of aggression, the VMHvl, includ-

ing the Esr1+/PR+ subpopulation, projects heavily to the

dorsomedial and lateral columns of the PAG [66,92].

These PAG columns also express high level of Fos after

aggressive behaviors [44,103]. Limited electrophysiolog-

ical recordings revealed that cells related to fighting exist
www.sciencedirect.com 
in the PAG [104]. Electric stimulation of the PAG could

elicit attack though it was often accompanied by motor

disturbance [105]. Electric lesion in the PAG decreased

natural aggression and increased the current threshold

required to induce attack from the hypothalamus [106].

Several lines of evidence suggest a role of the PAG in

sexual behavior although it remains unclear whether the

role is behavior-promoting or suppressing. Increased Fos

expression was found in the dorsal and ventral PAG after

mating [74] (but see [44]). Medial preoptic cells that are

active during mating project to the lateral PAG [107].

However, lesioning a large part of the PAG accelerated

instead of suppressing mounting behaviors [108], suggest-

ing that PAG may play an inhibitory role in sexual

behavior. Consistent with this hypothesis, recent tracing

studies show that projection from the MPA to PAG may

be originated largely from GABAergic cells rather than

glutamatergic cells (www.brain-map.org experiment ID:

305270515 and 292123352). Thus, during natural sexual

behaviors, MPA inputs to the PAG may facilitate the

sexual behaviors by inhibiting cells in the PAG.

In contrast to PAG mediated motor actions, many other

types of actions are mediated through striatal circuits. Do

the striatal motor circuits play any role in mating and

fighting? In a widely cited paper, Mogenson et al. pro-

posed that the ventral tegmental area (VTA) may link

hypothalamic output to the striatum [109]. In this model,

the hypothalamus specifies the goal of the future actions

and then relays this information through the VTA to the

striatum which then initiates the appropriate motor

actions to achieve the goal. Anatomical tracing supports

the existence of a projection from the medial preoptic

area to VTA dopaminergic cells which in turn project

heavily to the NAc, a major component of the ventral

striatum [110,111]. The dopaminergic projection from the

VTA to NAc appears to be functionally relevant for social

behaviors since changing the activity level of the VTA-

NAc projection can bi-directionally modulate the time

spent in social interaction [112�]. Microdialysis studies

further demonstrated that dramatic increases of dopa-

mine level in the NAc emerge during mating or fighting

[47,113]. This increase can be sensed by the downstream

dopamine receptor expressing cells and reflected in the

activity level of protein kinase A in those cells [114�].
Despite a clear involvement of the NAc during social

behavior, a close look at the dynamics of the dopamine

activity suggests that the role of the NAc is less likely to

be motor related but more likely to be motivation and/or

reward associated. For examples, the dopamine increases

not only during fighting but also when the animal antici-

pates a fight and is sustained after a fight [47]. Antago-

nizing dopamine receptors in the NAc nearly abolished an

appetitive operant response for the opportunity to attack

but only partially reduced attack during a resident-intrud-

er assay [115]. Whereas dopamine levels in the NAc
Current Opinion in Neurobiology 2016, 38:27–37
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increased during repeated copulation with sexually

receptive females, no concurrent dopamine increase was

detected during interaction with non-receptive females

even when the test animal attempted to mount the female

for a few times [113]. Thus, the non-striatal emotional

motor circuit may be indeed sufficient for the initiation and

full execution of fighting and mating while the VTA to NAc

pathway may modulate the likelihood and intensity of the

behavior at the moment and in the future.

Concluding marks
Through nearly a century of research, key brain regions

have been identified as critical nodes for the appetitive

and consummatory phases of sexual and aggressive be-

havior. However, the circuit diagram underlying these

behaviors remains incomplete. First, while some headway

has been made in a few areas in identifying relevant

molecularly defined populations, we still have far to go.

Each known relevant regions likely contains heteroge-

neous subpopulations that may play distinct yet unknown

roles in social behaviors. Second, the functional roles and

physiological responses of many brain regions that are

directly connected to the known aggression/mating loci

have not been investigated. Third, basic principles

regarding how information is relayed or transformed

between brain regions are unclear. Lastly, how circuits

are modified with social experience is largely unknown.

Future studies can fill these knowledge gaps by taking

advantage of the various cell-type and pathway specific

manipulation, recoding and tracing tools that are becom-

ing increasingly available in mice and other species.

Given that fighting and mating are innate behaviors

universal among vertebrate animal species, the basic

brain mechanisms underlying those behaviors are likely

evolutionarily conserved and principles learned from

study in experimental organisms will likely be applicable

to humans.
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