David M Rapoport

Biosketch / Results /

David Rapoport

Professor, Department of Medicine
Medicine
NYU Sleep Disorders Center

Contact Info

Address
462 First Avenue
New York, NY 10016

212/263-6407

Education

1975-1977 — St. Luke's-Roosevelt Hospital (Medicine), Residency Training

Research Summary


The recently described clinical syndrome of obstructive sleep apnea (OSAS), possibly affecting 2% to 10% of the adult population, is characterized by episodic sleep-induced changes in upper airway patency. These produce respiratory compromise ranging from partial to complete occlusion. Because obstruction represents a major challenge to homeostatic respiratory control mechanisms and because it can be completely reversed with a simple nasal mask/airway pressure device known as a nasal CPAP, OSAS provides an extraordinary opportunity to study control of breathing in humans.



Upper airway obstruction in OSAS results from interaction between subtle anatomic airway narrowing, increased wall collapsibility due sleep-induced loss of baseline muscle tone, and insufficient inspiratory phasic dilator muscle contraction to oppose the negative intraluminal pressure resulting from diaphragmatic contraction. This collapsible behavior can be modelled with a Starling resistor; exploring the properties of this model should provide insights into pathophysiology and treatment. One key observation is that a sinusoidally varying driving force (inspiratory diaphragmatic drive) acting through such a collapsible tube results in an inspiratory waveform which "flow limits." Although defined by pressure/flow relationships, flow limitation can be recognized by a flat contour of the inspiratory waveform in the flow/time display.



Appreciation of the information content of this easily obtained and noninvasive measurement has provided three research directions in our laboratory: 1) defining the role of the upper airway in sleep-related changes in respiratory control in normal subjects and patients with cardiorespiratory failure resulting in apnea and chronic hypercapnia; 2) developing diagnostic techniques to screen patients for the occurrence of sleep-related respiratory abnormalities; and 3) developing a technique for closed-loop computer-controlled regulation of the treatment for OSAS, e.g., a variation on nasal CPAP which automatically seeks the optimal pressure on a continuous basis.



Research Interests

-Causes of Sleep Disordered Breathing (Sleep Apnea). -Treatment of Sleep Disordered Breathing. -Epidemiology of Sleep Disordered Breathing. -Control of Breathing. -Control of the Upper Airway.

New insights on the pathophysiology of inspiratory flow limitation during sleep
de Godoy, Luciana B M; Palombini, Luciana O; Martinho Haddad, Fernanda L; Rapoport, David M; de Aguiar Vidigal, Tatiana; Klichouvicz, Priscila Calixto; Tufik, Sergio; Togeiro, Sonia M
2015-06-04; 1432-1750,Lung - id: 1610182, year: 2015 Journal Article

New insights on the pathophysiology of inspiratory flow limitation during sleep
Godoy, L B; Togeiro, S B; Haddad, F L; Rapoport, D M; Vidigal, T D; Klichouvicz, P C; Tufik, S; Palombini, L O
2015-05-28; 0161-8105,Sleep - id: 1600472, year: 2015

Sleep-disordered breathing advances cognitive decline in the elderly
Osorio, Ricardo S; Gumb, Tyler; Pirraglia, Elizabeth; Varga, Andrew W; Lu, Shou-En; Lim, Jason; Wohlleber, Margaret E; Ducca, Emma L; Koushyk, Viachaslau; Glodzik, Lidia; Mosconi, Lisa; Ayappa, Indu; Rapoport, David M; de Leon, Mony J
2015-04-20; 1526-632x,Neurology - id: 1533162, year: 2015 JOURNAL ARTICLE

Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization
Parekh, Ankit; Selesnick, Ivan W; Rapoport, David M; Ayappa, Indu
2015-08-20; 1872-678x,Journal of neuroscience methods - id: 1729722, year: 2015 Journal Article

Sleep effects on cognition in the elderly and the importance of daytime activity
Twumasi, A; Gumb, T; Ducca, E L; Wohlleber, M E; Ayappa, I; Rapoport, D M; Osorio, R S
2015-05-28; 0161-8105,Sleep - id: 1600312, year: 2015